Skip to content

train.py

Code adapted from the Mathis Lab MIT License Copyright (c) 2022 Mackenzie Mathis DataJoint Schema for DeepLabCut 2.x, Supports 2D and 3D DLC via triangulation.

activate(train_schema_name, *, create_schema=True, create_tables=True, linking_module=None)

Activate this schema.

Parameters:

Name Type Description Default
train_schema_name str

schema name on the database server

required
create_schema bool

when True (default), create schema in the database if it does not yet exist.

True
create_tables bool

when True (default), create schema tables in the database if they do not yet exist.

True
linking_module str

a module (or name) containing the required dependencies.

None

Dependencies:

Functions

get_dlc_root_data_dir(): Returns absolute path for root data director(y/ies) with all behavioral recordings, as (list of) string(s). get_dlc_processed_data_dir(): Optional. Returns absolute path for processed data. Defaults to session video subfolder.

Source code in element_deeplabcut/train.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def activate(
    train_schema_name: str,
    *,
    create_schema: bool = True,
    create_tables: bool = True,
    linking_module: str = None
):
    """Activate this schema.

    Args:
        train_schema_name (str): schema name on the database server
        create_schema (bool): when True (default), create schema in the database if it
                            does not yet exist.
        create_tables (bool): when True (default), create schema tables in the database
                             if they do not yet exist.
        linking_module (str): a module (or name) containing the required dependencies.

    Dependencies:
    Functions:
        get_dlc_root_data_dir(): Returns absolute path for root data director(y/ies)
                                 with all behavioral recordings, as (list of) string(s).
        get_dlc_processed_data_dir(): Optional. Returns absolute path for processed
                                      data. Defaults to session video subfolder.
    """

    if isinstance(linking_module, str):
        linking_module = importlib.import_module(linking_module)
    assert inspect.ismodule(
        linking_module
    ), "The argument 'dependency' must be a module's name or a module"
    assert hasattr(
        linking_module, "get_dlc_root_data_dir"
    ), "The linking module must specify a lookup function for a root data directory"

    global _linking_module
    _linking_module = linking_module

    # activate
    schema.activate(
        train_schema_name,
        create_schema=create_schema,
        create_tables=create_tables,
        add_objects=_linking_module.__dict__,
    )

get_dlc_root_data_dir()

Pulls relevant func from parent namespace to specify root data dir(s).

It is recommended that all paths in DataJoint Elements stored as relative paths, with respect to some user-configured "root" director(y/ies). The root(s) may vary between data modalities and user machines. Returns a full path string or list of strings for possible root data directories.

Source code in element_deeplabcut/train.py
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
def get_dlc_root_data_dir() -> list:
    """Pulls relevant func from parent namespace to specify root data dir(s).

    It is recommended that all paths in DataJoint Elements stored as relative
    paths, with respect to some user-configured "root" director(y/ies). The
    root(s) may vary between data modalities and user machines. Returns a full path
    string or list of strings for possible root data directories.
    """
    root_directories = _linking_module.get_dlc_root_data_dir()
    if isinstance(root_directories, (str, Path)):
        root_directories = [root_directories]

    if (
        hasattr(_linking_module, "get_dlc_processed_data_dir")
        and get_dlc_processed_data_dir() not in root_directories
    ):
        root_directories.append(_linking_module.get_dlc_processed_data_dir())

    return root_directories

get_dlc_processed_data_dir()

Pulls relevant func from parent namespace. Defaults to DLC's project /videos/.

Method in parent namespace should provide a string to a directory where DLC output files will be stored. If unspecified, output files will be stored in the session directory 'videos' folder, per DeepLabCut default.

Source code in element_deeplabcut/train.py
 97
 98
 99
100
101
102
103
104
105
106
107
def get_dlc_processed_data_dir() -> str:
    """Pulls relevant func from parent namespace. Defaults to DLC's project /videos/.

    Method in parent namespace should provide a string to a directory where DLC output
    files will be stored. If unspecified, output files will be stored in the
    session directory 'videos' folder, per DeepLabCut default.
    """
    if hasattr(_linking_module, "get_dlc_processed_data_dir"):
        return _linking_module.get_dlc_processed_data_dir()
    else:
        return get_dlc_root_data_dir()[0]

VideoSet

Bases: dj.Manual

Collection of videos included in a given training set.

Attributes:

Name Type Description
video_set_id int

Unique ID for collection of videos.

Source code in element_deeplabcut/train.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
@schema
class VideoSet(dj.Manual):
    """Collection of videos included in a given training set.

    Attributes:
        video_set_id (int): Unique ID for collection of videos."""

    definition = """ # Set of vids in training set
    video_set_id: int
    """

    class File(dj.Part):
        """File IDs and paths in a given VideoSet

        Attributes:
            VideoSet (foreign key): VideoSet key.
            file_path ( varchar(255) ): Path to file on disk relative to root."""

        definition = """ # Paths of training files (e.g., labeled pngs, CSV or video)
        -> master
        file_id: int
        ---
        file_path: varchar(255)
        """

File

Bases: dj.Part

File IDs and paths in a given VideoSet

Attributes:

Name Type Description
VideoSet foreign key

VideoSet key.

file_path varchar(255)

Path to file on disk relative to root.

Source code in element_deeplabcut/train.py
124
125
126
127
128
129
130
131
132
133
134
135
136
class File(dj.Part):
    """File IDs and paths in a given VideoSet

    Attributes:
        VideoSet (foreign key): VideoSet key.
        file_path ( varchar(255) ): Path to file on disk relative to root."""

    definition = """ # Paths of training files (e.g., labeled pngs, CSV or video)
    -> master
    file_id: int
    ---
    file_path: varchar(255)
    """

TrainingParamSet

Bases: dj.Lookup

Parameters used to train a model

Attributes:

Name Type Description
paramset_idx smallint

Index uniqely identifying paramset.

paramset_desc varchar(128)

Description of paramset.

param_set_hash uuid

Hash identifying this paramset.

params longblob

Dictionary of all applicable parameters.

Note longblob

param_set_hash must be unique.

Source code in element_deeplabcut/train.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@schema
class TrainingParamSet(dj.Lookup):
    """Parameters used to train a model

    Attributes:
        paramset_idx (smallint): Index uniqely identifying paramset.
        paramset_desc ( varchar(128) ): Description of paramset.
        param_set_hash (uuid): Hash identifying this paramset.
        params (longblob): Dictionary of all applicable parameters.
        Note: param_set_hash must be unique."""

    definition = """
    # Parameters to specify a DLC model training instance
    # For DLC ≤ v2.0, include scorer_legacy = True in params
    paramset_idx                  : smallint
    ---
    paramset_desc: varchar(128)
    param_set_hash                : uuid      # hash identifying this parameterset
    unique index (param_set_hash)
    params                        : longblob  # dictionary of all applicable parameters
    """

    required_parameters = ("shuffle", "trainingsetindex")
    skipped_parameters = ("project_path", "video_sets")

    @classmethod
    def insert_new_params(
        cls, paramset_desc: str, params: dict, paramset_idx: int = None
    ):
        """
        Insert a new set of training parameters into dlc.TrainingParamSet.

        Args:
            paramset_desc (str): Description of parameter set to be inserted
            params (dict): Dictionary including all settings to specify model training.
                        Must include shuffle & trainingsetindex b/c not in config.yaml.
                        project_path and video_sets will be overwritten by config.yaml.
                        Note that trainingsetindex is 0-indexed
            paramset_idx (int): optional, integer to represent parameters.
        """

        for required_param in cls.required_parameters:
            assert required_param in params, (
                "Missing required parameter: " + required_param
            )
        for skipped_param in cls.skipped_parameters:
            if skipped_param in params:
                params.pop(skipped_param)

        if paramset_idx is None:
            paramset_idx = (
                dj.U().aggr(cls, n="max(paramset_idx)").fetch1("n") or 0
            ) + 1

        param_dict = {
            "paramset_idx": paramset_idx,
            "paramset_desc": paramset_desc,
            "params": params,
            "param_set_hash": dict_to_uuid(params),
        }
        param_query = cls & {"param_set_hash": param_dict["param_set_hash"]}
        # If the specified param-set already exists
        if param_query:
            existing_paramset_idx = param_query.fetch1("paramset_idx")
            if existing_paramset_idx == int(paramset_idx):  # If existing_idx same:
                return  # job done
        else:
            cls.insert1(param_dict)  # if duplicate, will raise duplicate error

insert_new_params(paramset_desc, params, paramset_idx=None) classmethod

Insert a new set of training parameters into dlc.TrainingParamSet.

Parameters:

Name Type Description Default
paramset_desc str

Description of parameter set to be inserted

required
params dict

Dictionary including all settings to specify model training. Must include shuffle & trainingsetindex b/c not in config.yaml. project_path and video_sets will be overwritten by config.yaml. Note that trainingsetindex is 0-indexed

required
paramset_idx int

optional, integer to represent parameters.

None
Source code in element_deeplabcut/train.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@classmethod
def insert_new_params(
    cls, paramset_desc: str, params: dict, paramset_idx: int = None
):
    """
    Insert a new set of training parameters into dlc.TrainingParamSet.

    Args:
        paramset_desc (str): Description of parameter set to be inserted
        params (dict): Dictionary including all settings to specify model training.
                    Must include shuffle & trainingsetindex b/c not in config.yaml.
                    project_path and video_sets will be overwritten by config.yaml.
                    Note that trainingsetindex is 0-indexed
        paramset_idx (int): optional, integer to represent parameters.
    """

    for required_param in cls.required_parameters:
        assert required_param in params, (
            "Missing required parameter: " + required_param
        )
    for skipped_param in cls.skipped_parameters:
        if skipped_param in params:
            params.pop(skipped_param)

    if paramset_idx is None:
        paramset_idx = (
            dj.U().aggr(cls, n="max(paramset_idx)").fetch1("n") or 0
        ) + 1

    param_dict = {
        "paramset_idx": paramset_idx,
        "paramset_desc": paramset_desc,
        "params": params,
        "param_set_hash": dict_to_uuid(params),
    }
    param_query = cls & {"param_set_hash": param_dict["param_set_hash"]}
    # If the specified param-set already exists
    if param_query:
        existing_paramset_idx = param_query.fetch1("paramset_idx")
        if existing_paramset_idx == int(paramset_idx):  # If existing_idx same:
            return  # job done
    else:
        cls.insert1(param_dict)  # if duplicate, will raise duplicate error

TrainingTask

Bases: dj.Manual

Staging table for pairing videosets and training parameter sets

Attributes:

Name Type Description
VideoSet foreign key

VideoSet Key.

TrainingParamSet foreign key

TrainingParamSet key.

training_id int

Unique ID for training task.

model_prefix varchar(32)

Optional. Prefix for model files.

project_path varchar(255)

Optional. DLC's project_path in config relative to get_dlc_root_data_dir

Source code in element_deeplabcut/train.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
@schema
class TrainingTask(dj.Manual):
    """Staging table for pairing videosets and training parameter sets

    Attributes:
        VideoSet (foreign key): VideoSet Key.
        TrainingParamSet (foreign key): TrainingParamSet key.
        training_id (int): Unique ID for training task.
        model_prefix ( varchar(32) ): Optional. Prefix for model files.
        project_path ( varchar(255) ): Optional. DLC's project_path in config relative
                                       to get_dlc_root_data_dir
    """

    definition = """      # Specification for a DLC model training instance
    -> VideoSet           # labeled video(s) for training
    -> TrainingParamSet
    training_id     : int
    ---
    model_prefix='' : varchar(32)
    project_path='' : varchar(255) # DLC's project_path in config relative to root
    """

ModelTraining

Bases: dj.Computed

Automated Model training information.

Attributes:

Name Type Description
TrainingTask foreign key

TrainingTask key.

latest_snapshot int unsigned

Latest exact snapshot index (i.e., never -1).

config_template longblob

Stored full config file.

Source code in element_deeplabcut/train.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
@schema
class ModelTraining(dj.Computed):
    """Automated Model training information.

    Attributes:
        TrainingTask (foreign key): TrainingTask key.
        latest_snapshot (int unsigned): Latest exact snapshot index (i.e., never -1).
        config_template (longblob): Stored full config file."""

    definition = """
    -> TrainingTask
    ---
    latest_snapshot: int unsigned # latest exact snapshot index (i.e., never -1)
    config_template: longblob     # stored full config file
    """

    # To continue from previous training snapshot, devs suggest editing pose_cfg.yml
    # https://github.com/DeepLabCut/DeepLabCut/issues/70

    def make(self, key):
        """Launch training for each train.TrainingTask training_id via `.populate()`."""
        project_path, model_prefix = (TrainingTask & key).fetch1(
            "project_path", "model_prefix"
        )

        project_path = find_full_path(get_dlc_root_data_dir(), project_path)

        # ---- Build and save DLC configuration (yaml) file ----
        _, dlc_config = dlc_reader.read_yaml(project_path)  # load existing
        dlc_config.update((TrainingParamSet & key).fetch1("params"))
        dlc_config.update(
            {
                "project_path": project_path.as_posix(),
                "modelprefix": model_prefix,
                "train_fraction": dlc_config["TrainingFraction"][
                    int(dlc_config["trainingsetindex"])
                ],
                "training_filelist_datajoint": [  # don't overwrite origin video_sets
                    find_full_path(get_dlc_root_data_dir(), fp).as_posix()
                    for fp in (VideoSet.File & key).fetch("file_path")
                ],
            }
        )
        # Write dlc config file to base project folder
        dlc_cfg_filepath = dlc_reader.save_yaml(project_path, dlc_config)

        # ---- Trigger DLC model training job ----
        train_network_input_args = list(inspect.signature(train_network).parameters)
        train_network_kwargs = {
            k: v for k, v in dlc_config.items() if k in train_network_input_args
        }
        for k in ["shuffle", "trainingsetindex", "maxiters"]:
            train_network_kwargs[k] = int(train_network_kwargs[k])

        try:
            train_network(dlc_cfg_filepath, **train_network_kwargs)
        except KeyboardInterrupt:  # Instructions indicate to train until interrupt
            print("DLC training stopped via Keyboard Interrupt")

        snapshots = list(
            (
                project_path
                / get_model_folder(
                    trainFraction=dlc_config["train_fraction"],
                    shuffle=dlc_config["shuffle"],
                    cfg=dlc_config,
                    modelprefix=dlc_config["modelprefix"],
                )
                / "train"
            ).glob("*index*")
        )
        max_modified_time = 0
        # DLC goes by snapshot magnitude when judging 'latest' for evaluation
        # Here, we mean most recently generated
        for snapshot in snapshots:
            modified_time = os.path.getmtime(snapshot)
            if modified_time > max_modified_time:
                latest_snapshot = int(snapshot.stem[9:])
                max_modified_time = modified_time

        self.insert1(
            {**key, "latest_snapshot": latest_snapshot, "config_template": dlc_config}
        )

make(key)

Launch training for each train.TrainingTask training_id via .populate().

Source code in element_deeplabcut/train.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
def make(self, key):
    """Launch training for each train.TrainingTask training_id via `.populate()`."""
    project_path, model_prefix = (TrainingTask & key).fetch1(
        "project_path", "model_prefix"
    )

    project_path = find_full_path(get_dlc_root_data_dir(), project_path)

    # ---- Build and save DLC configuration (yaml) file ----
    _, dlc_config = dlc_reader.read_yaml(project_path)  # load existing
    dlc_config.update((TrainingParamSet & key).fetch1("params"))
    dlc_config.update(
        {
            "project_path": project_path.as_posix(),
            "modelprefix": model_prefix,
            "train_fraction": dlc_config["TrainingFraction"][
                int(dlc_config["trainingsetindex"])
            ],
            "training_filelist_datajoint": [  # don't overwrite origin video_sets
                find_full_path(get_dlc_root_data_dir(), fp).as_posix()
                for fp in (VideoSet.File & key).fetch("file_path")
            ],
        }
    )
    # Write dlc config file to base project folder
    dlc_cfg_filepath = dlc_reader.save_yaml(project_path, dlc_config)

    # ---- Trigger DLC model training job ----
    train_network_input_args = list(inspect.signature(train_network).parameters)
    train_network_kwargs = {
        k: v for k, v in dlc_config.items() if k in train_network_input_args
    }
    for k in ["shuffle", "trainingsetindex", "maxiters"]:
        train_network_kwargs[k] = int(train_network_kwargs[k])

    try:
        train_network(dlc_cfg_filepath, **train_network_kwargs)
    except KeyboardInterrupt:  # Instructions indicate to train until interrupt
        print("DLC training stopped via Keyboard Interrupt")

    snapshots = list(
        (
            project_path
            / get_model_folder(
                trainFraction=dlc_config["train_fraction"],
                shuffle=dlc_config["shuffle"],
                cfg=dlc_config,
                modelprefix=dlc_config["modelprefix"],
            )
            / "train"
        ).glob("*index*")
    )
    max_modified_time = 0
    # DLC goes by snapshot magnitude when judging 'latest' for evaluation
    # Here, we mean most recently generated
    for snapshot in snapshots:
        modified_time = os.path.getmtime(snapshot)
        if modified_time > max_modified_time:
            latest_snapshot = int(snapshot.stem[9:])
            max_modified_time = modified_time

    self.insert1(
        {**key, "latest_snapshot": latest_snapshot, "config_template": dlc_config}
    )